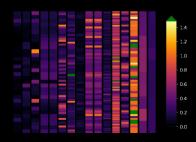
Métricas de Equivarianza Transformacional para Redes Neuronales Convolucionales

Facundo Manuel Quiroga

III-LIDI Instituto de Investigación en Informática Universidad Nacional de La Plata 9 de Marzo de 2020

Directora: Laura Lanzarini



Motivación

¿Cómo codificamos...

7

... con una Red Neuronal?

Índice

1. Marco teórico

2. Experimentos con Invarianza

3. Métricas

4. Análisis con Métricas

1. Marco teórico

Invarianza

[1]

f es invariante a $T=t_1,\ldots,t_m$ sii $\forall x$:

$$f(t_1(x)) = f(t_2(x)) = \cdots = f(t_m(x))$$

Auto Equivarianza

f es auto equivariante a $T=t_1,\ldots,t_m$ sii $\forall x, \forall t \in T$:

$$f(t(x)) = t(f(x))$$

$$f(x)$$

[2]

Equivarianza

[3]

f es equivariante a $T=t_1,\ldots,t_m$ sii $\forall t\in T,\exists t',\forall x$:

$$f(t(x)) = t'(f(x))$$

$$t(x)$$

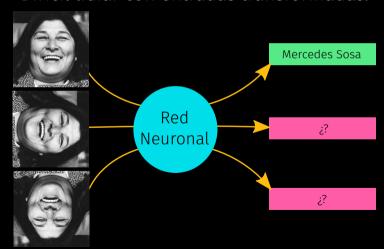
_

Red Neuronal

Estructurada en capas/activaciones. Representaciones de caja negra complejas.

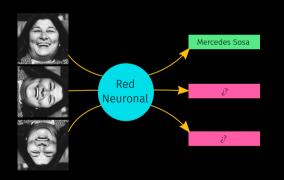
Red vs Transformaciones

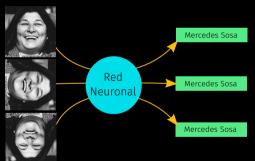
Difícil lidiar con entradas transformadas.



Objetivo

¿Qué diferencia a estos modelos?



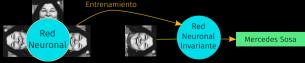


Redes Neuronales Invariantes

1. Modelo de transformación:

2. Modelo con capas invariantes:

3. Aumentación de datos:



Spatial Transformer Network (STN)

Modelo de transformación (afín) end-to-end

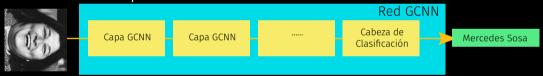
Red STN

· Capa STL

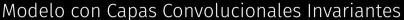


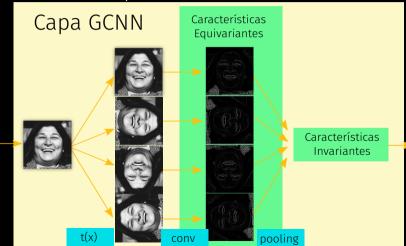
Group CNN (GCNN)

Modelo con Capas Convolucionales Invariantes



Group CNN (GCNN)





2. Experimentos con Invarianza

Transformaciones y Bases de Datos

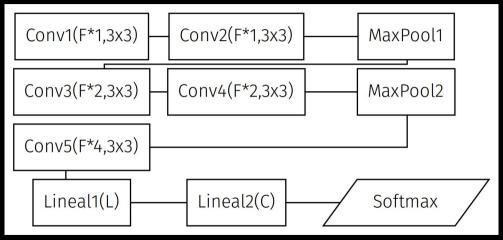
Rotación



Escala

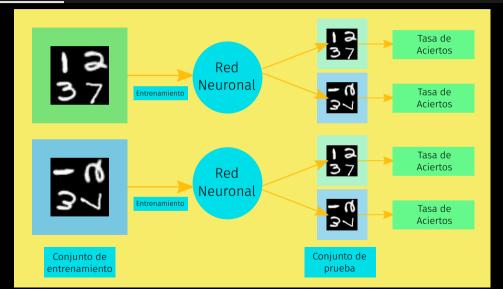
Traslación

Modelo

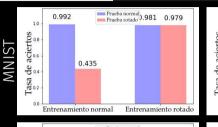


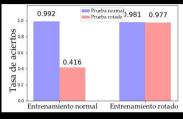
SimpleConv

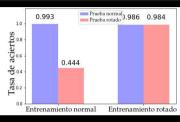
Experimento 1: Aumentación vs Modelos

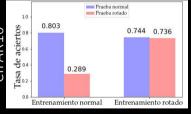


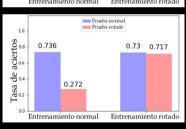
Resultados Experimento 1: Rotación/SimpleConv

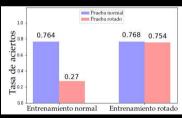










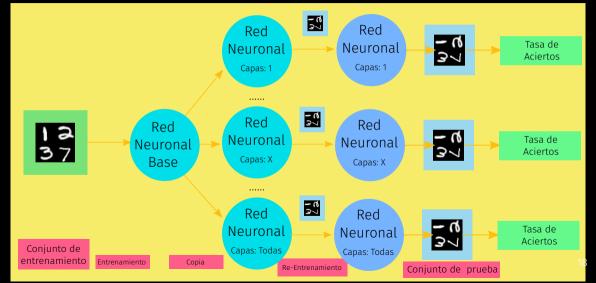


SimpleConv+DA

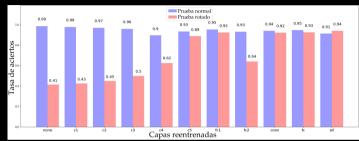
SimpleConv+STN

SimpleConv+GCNN

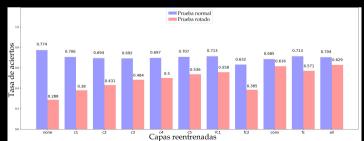
Experimento 2: Re-entrenamiento



Resultados Experimento 2: Rotación



CIFAR10



Conclusiones

- \star Capas Invariantes \neq Modelo Invariante
- * Codificación de la (equi?) invarianza varía por capa

- → Estudiar la codificación por capa
 - Modelos Invariantes
 - Modelos comunes entrenados con aumentación de datos

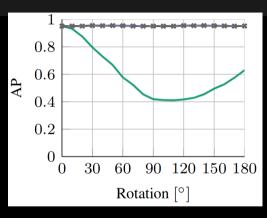
3. Métricas: Contribuciones

Métricas para evaluar Invarianza

Invarianza = Tasa de acierto

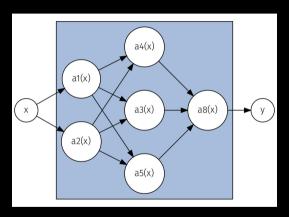
 \rightarrow ejemplos originales vs transformados

[Pen+14; FF15; TC16; Eng+17; KWT17; Kan17; Qui+18; BRW18; Amo+18; SG18; AW18; Kau18]



- Ejemplos originales.
- Ejemplos transformados.

Métricas por activaciones



8 activaciones distintas → 8 métricas independientes

Fuentes de variacion

	t_1	t_2	t_3	t_4
x_1	2	R	E	R
x_2	7	7	6	6
x_3	4	X	h	I
x_4	7	4	七	4
x_5	5	M	7	H

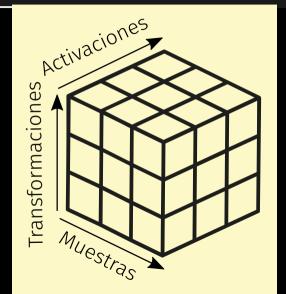
- Muestras
 - \cdot x_1, \dots, x_n
 - filas
- Transformaciones
 - $\cdot \ t_1, \dots, t_m$
 - columnas

Matriz **MT**:Muestra-Transformación de Activaciones

(a) Muestras y transformaciones

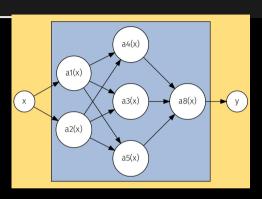
(b) Matriz $\mathbf{MT}(a)$

Matrices MT



- n Muestras
- · m Transformaciones
- k Activaciones
- $\cdot \to k$ matrices \mathbf{MT} de $n \times m$

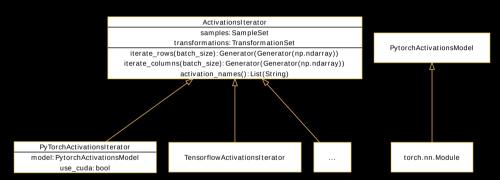
Matrices \mathbf{MT}



- Recorrido estándar:
 - Entrada: $t_k(x_i)$
 - Salida: Vector de k
 elementos

- Recorrido deseado:
 - Entrada: activación a
 - Salida: Matriz $\mathbf{MT}(a)$ de m imes n

Librería para iterar sobre matrices MT



Iteradores y métricas:

https://github.com/facundoq/transformational_measures

Métricas propuestas

- Métricas de Invarianza
 - Basadas en ANOVA
 - · Basadas en Varianza, Distancia
 - · Con o sin normalización
- · Métricas de Auto-Equi<u>varianza</u>
 - · Basadas en Varianza o Distancia
 - Con o sin normalización

Métrica ANOVA

Matriz $\mathbf{MT} \simeq \mathsf{matriz}$ de ANOVA de una vía

Transformaciones \simeq grupos

Invarianza = NO rechazar

Corrección de Bonferroni

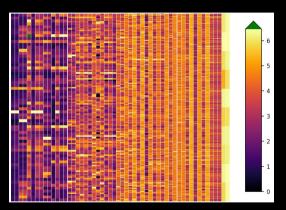
Métrica Varianza Transformacional


```
 \begin{array}{c} \rightarrow (1) \, \text{Var} \\ \downarrow \\ \text{Bo} \\ \text{Bo} \\ \text{Bo} \\ \text{C} \\ \end{array} \\ \begin{bmatrix} a(t_1(x_1)) & a(t_2(x_1)) & a(t_3(x_1)) & a(t_4(x_1)) \\ a(t_1(x_2)) & a(t_2(x_2)) & a(t_3(x_2)) & a(t_4(x_2)) \\ a(t_1(x_3)) & a(t_2(x_3)) & a(t_3(x_3)) & a(t_4(x_3)) \\ a(t_1(x_4)) & a(t_2(x_4)) & a(t_3(x_4)) & a(t_4(x_4)) \\ a(t_1(x_5)) & a(t_2(x_5)) & a(t_3(x_5)) & a(t_4(x_5)) \end{bmatrix} \\ \Longrightarrow Media \\ \begin{bmatrix} Var([a(t_1(x_1)) \, a(t_2(x_1)) \, a(t_2(x_1)) \, a(t_3(x_1)) \, a(t_4(x_1)]) \\ Var([a(t_1(x_3)) \, a(t_2(x_2)) \, a(t_3(x_2)) \, a(t_4(x_3)]) \\ Var([a(t_1(x_4)) \, a(t_2(x_4)) \, a(t_3(x_4)) \, a(t_4(x_4)]) \\ Var([a(t_1(x_5)) \, a(t_2(x_5)) \, a(t_3(x_5)) \, a(t_4(x_5)]) \end{bmatrix} \\ \\ \downarrow \\ Var([a(t_1(x_5)) \, a(t_2(x_5)) \, a(t_3(x_5)) \, a(t_4(x_5)]) \\ Var([a(t_1(x_5)) \, a(t_2(x_5)) \, a(t_3(x_5)) \, a(t_4(x_5)]) \end{bmatrix} \\ \\ \downarrow \\ Var([a(t_1(x_5)) \, a(t_2(x_5)) \, a(t_3(x_5)) \, a(t_4(x_5)]) \\ Var([a(t_1(x_5)) \, a(t_2(x_5)) \, a(t_3(x_5)) \, a(t_4(x_5))] \\ Var([a(t_1(x_5) \, a(t_2(x_5)) \, a(t_3(x_5))
```

$$VT(a) = Media \begin{pmatrix} \begin{bmatrix} Var(\mathbf{MT}(a)[1,:]) \\ \cdots \\ Var(\mathbf{MT}(a)[n,:]) \end{bmatrix} \end{pmatrix}$$
[4

Métrica Varianza Transformacional- Visualización

- · Columnas: Capas
- Rectángulos: Activaciones de la capa
- · Color: Valor de la métrica

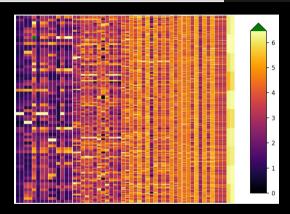


Métrica Varianza Muestral


```
 \begin{array}{c} \rightarrow \text{(2) Media} \\ \downarrow \\ \vdots \\ \Xi \\ a(t_1(x_2)) \quad a(t_2(x_1)) \quad a(t_3(x_1)) \quad a(t_4(x_1)) \\ \vdots \\ \Xi \\ a(t_1(x_2)) \quad a(t_2(x_2)) \quad a(t_3(x_2)) \quad a(t_4(x_2)) \\ \vdots \\ a(t_1(x_4)) \quad a(t_2(x_3)) \quad a(t_2(x_3)) \quad a(t_3(x_3)) \quad a(t_4(x_3)) \\ \vdots \\ a(t_1(x_4)) \quad a(t_2(x_4)) \quad a(t_2(x_4)) \quad a(t_3(x_4)) \quad a(t_4(x_3)) \\ \vdots \\ a(t_1(x_4)) \quad a(t_2(x_4)) \quad a(t_2(x_4)) \quad a(t_2(x_4)) \quad a(t_3(x_4)) \\ \vdots \\ a(t_1(x_3)) \quad a(t_2(x_4)) \quad a(t_2(x_4)) \quad a(t_3(x_4)) \\ \vdots \\ a(t_1(x_3)) \quad a(t_2(x_3)) \quad a(t_2(x_3)) \quad a(t_3(x_3)) \\ \vdots \\ a(t_1(x_3)) \quad a(t_2(x_3)) \quad a(t_2(x_3)) \quad a(t_3(x_3)) \\ \vdots \\ a(t_1(x_3)) \quad a(t_2(x_3)) \quad a(t_2(x_3)) \quad a(t_3(x_3)) \\ \vdots \\ a(t_1(x_3)) \quad a(t_2(x_3)) \quad a(t_2(x_3)) \quad a(t_3(x_3)) \\ \vdots \\ a(t_1(x_3)) \quad a(t_2(x_3)) \quad a(t_2(x_3)) \quad a(t_3(x_3)) \\ \vdots \\ a(t_1(x_3)) \quad a(t_2(x_3)) \quad a(t_2(x_3)) \quad a(t_3(x_3)) \\ \vdots \\ a(t_1(x_3)) \quad a(t_2(x_3)) \quad a(t_2(x_3)) \quad a(t_3(x_3)) \\ \vdots \\ a(t_1(x_3)) \quad a(t_2(x_3)) \quad a(t_2(x_3)) \quad a(t_3(x_3)) \\ \vdots \\ a(t_1(x_3)) \quad a(t_2(x_3)) \quad a(t_2(x_3)) \quad a(t_3(x_3)) \\ \vdots \\ a(t_1(x_3)) \quad a(t_2(x_3)) \quad
```

$$VM(A) = Media\left(\left[Var(\mathbf{MT}[:,1]) \quad \cdots \quad Var(\mathbf{MT}(a)[:,m])\right]\right)$$
 [5]

Métrica Varianza Muestral-Visualización



7.5

VARIANZA TRANSFORMACIONAL

VARIANZA MUESTRAL

Métrica Varianza Normalizada

Definición:

$$VN(a) = \frac{VT(a)}{VM(a)}$$

[6]

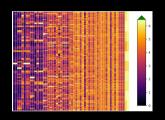
Casos:

- VN(a) = 0
- VN(a) < 1
- Si VN(a) > 1
- Si $VN(a) \simeq 1$

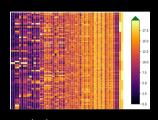
Métrica Varianza Normalizada- Eficiencia

- · Calculo online de varianza y media
 - Algoritmo de Welford
 - $\cdot \ \to VT \in \mathcal{O}(n \times m \times k)$
 - $\overline{ \cdot \rightarrow VM} \in \mathcal{O}(n imes m imes k)$
- $r o VN \in \mathcal{O}(n \times m \times k)$

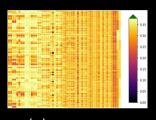
Métrica Varianza Normalizada- Visualización



(a) VARIANZA
TRANSFORMACIONAL



(b) Varianza Muestral

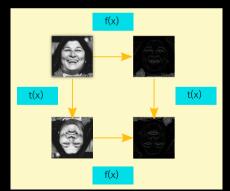


(c) Varianza Normalizada

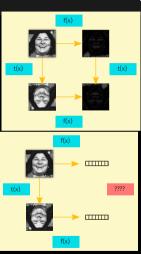
Métrica Distancia Normalizada

- \cdot Reemplazar Var por DistanciaMedia
- Distancia Media entre pares de activaciones
 - · Cualquier medida de distancia
- Misma interpretación que Varianza Normalizada
- · Eficiencia $\mathcal{O}(\overline{max(m,n)} \times m \times n \times k)$
 - \cdot Versión aproximada $\mathcal{O}(b imes m imes n imes k)$ (b tamaño de lote)
- Para distancia euclídea
 - · DistanciaMedia($\begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$) = 2 $Var(\begin{bmatrix} x_1 & \dots & x_n \end{bmatrix})$
 - DN(a) = VN(a)

- Equivarianza
 - Estimar t'
- Auto-Equivarianza
 - t'=t

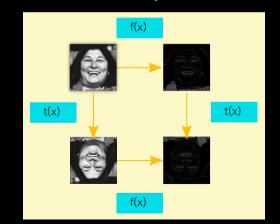


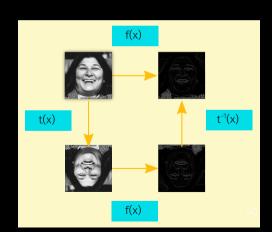
- $x \in Dom(t)$ (por def)
- t' = t (Auto-Equivarianza)
- $f(x) \in Dom(t)$
 - Si $x \in R^{h \times w \times c}$
 - $\overline{\cdot}$ y $f(x) \in R^{h' imes w' imes c'}$
 - puedo medir
 - Si $x \in R^{h \times w \times c}$
 - y $f(x) \in R^l$
 - no puedo medir



Medir conjuntos de activaciones $A = [a_1, ..., a_k] \in Dom(t)$

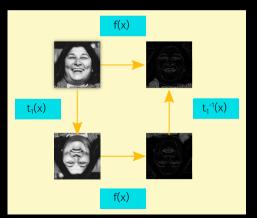
- · Asumimos $id \in T = [t_1, \dots, t_m]$
- · Asumimos t_i invertible

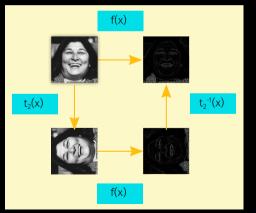




Medir

$$f(x) = t_1^{-1}(f(t_1(x))) = t_2^{-1}(f(t_2(x))) = \dots = t_m^{-1}(f(t_m(x)))$$





AUTO-EQUIVARIANZA TRANSFORMACIONAL DE VARIANZA

- A conj de activaciones tal que $A \in Dom(t)$
- $oldsymbol{\cdot}$ Matriz \mathbf{MT}' modificada

·
$$MT'(A)[i, j] = t_j^{-1}A(t_j(x_i))$$

• $\mathbf{MT}'(A)[i,j] \in Dom(t)$

$$AETV(A) = Media($$

$$Var(\mathbf{MT}'(A)[1,:]),$$
...,

 $Var(\mathbf{MT'}(\overline{A})[n,\overline{:]})$

)

Mét. Auto-Equivarianza Normalizada de Varianza

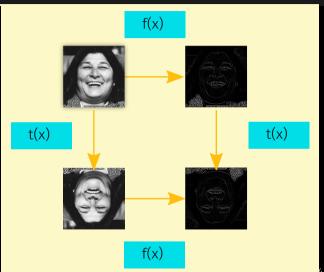
- AUTO-EQUIVARIANZA MUESTRAL DE VARIANZA
 - Similar a AETV
- Auto-Equivarianza Normalizada de Varianza

$$AENV(A) = \frac{AETV(A)}{AEMV(A)}$$
 [8]

- · Misma interpretación que Varianza Normalizada
- · Misma generalización a AETD

Métrica Auto-Equivarianza de Distancia Simple

- Las métricas anteriores asumen t_i invertible
- Alternativa: Comparar f(t(x))con t(f(x))



Métricas - Resumen

- Invarianza
 - ANOVA
 - · Basadas en Varianza
 - Transformacional
 - Muestral
 - Normalizada
 - Basadas en Distancia
 - Transformacional
 - Muestral
 - Normalizada

Auto-Equivarianza

- · Basadas en Varianza
 - Transformacional
 - Muestral
 - Normalizada
- · Basadas en Distancia
 - Transformacional
 - Muestral
 - Normalizada
- Auto-Equivarianza de Distancia Simple

Métricas - Conclusiones

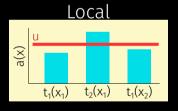
- Métricas de Invarianza y Auto-Equivarianza Normalizadas
 - · Cociente entre Transformaciones y Muestras
- Métricas basadas en varianza
 - Eficientes: $\mathcal{O}(k \times m \times n)$
- Métricas basadas en distancia
 - Más flexibles
 - · Aproximadas y menos eficientes: $\mathcal{O}(b imes k imes m imes n)$
- · Sirven para cualquier red neuronal
- Posibilidad de especializar para capas especiales
- Código libre:

https://github.com/facundoq/transformational_measures

4.Experimentos de Análisis de Equivarianza

Métrica de Invarianza de Goodfellow [Goo+09]

- 1. Independiente para cada activación a
- 2. Noción de tasa de disparos con umbral \boldsymbol{u}
- 3. Si a(x) > u entonces a(x) está activa
- 4. Definiciones
 - 4.1 $Global(a,u) = \mathbb{E}_{x \in X}(\overline{a(x)} > u)$
 - 4.2 $Local(a, u) = \mathbb{E}_{x \in X, t \in T}(a(t(x)) > u)$
 - 4.3 $Goodfellow(a, u) = \frac{Local(a, u)}{Global(a, u)}$
- 5. u := u* tal que Global(a, u*) = 0.01



Problemas: u es percentil, $tasa\ de\ disparos$, interpretabilidad

Experimentos con métricas

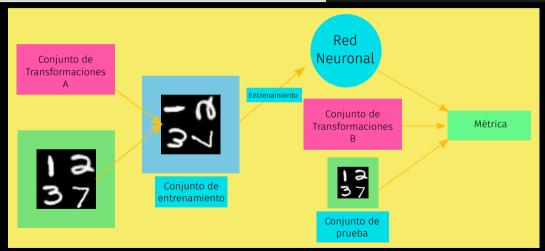
Objetivos

- 1. Validar las métricas
- 2. Analizar sus propiedades
- 3. Comprender modelos

Modelos/Datos/Transformaciones/Métricas

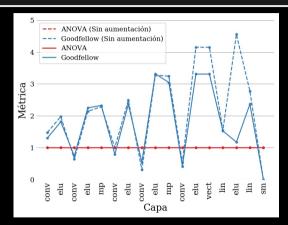
- SimpleConv
- MNIST/CIFAR10
- Rotaciones
- Invarianza de VN

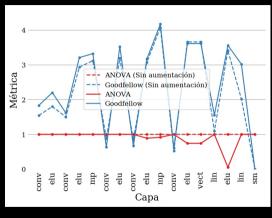
Métodología



Posibilidades: A = B, $A \neq B$, $A \subseteq B$ A = [id],

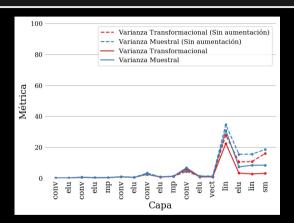
Invarianza - Anova, Goodfellow

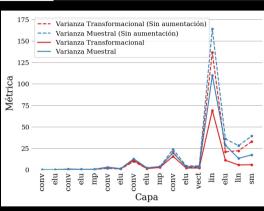




MNIST

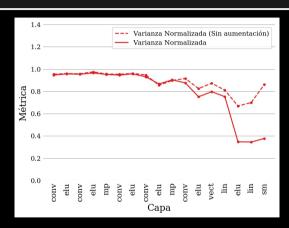
Invarianza - VT y VM

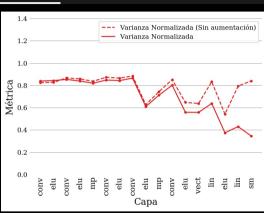




MNIST

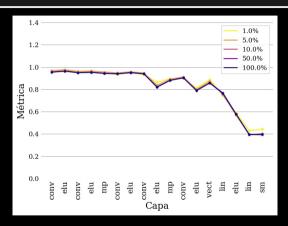
Invarianza - VN

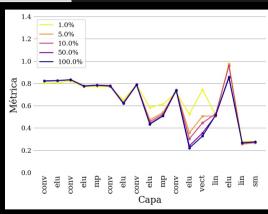




MNIST

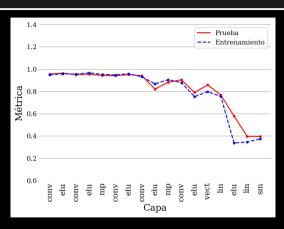
Tamaño del Conjunto de Datos - Invarianza VN

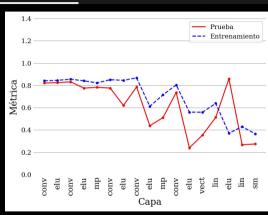




MNIST

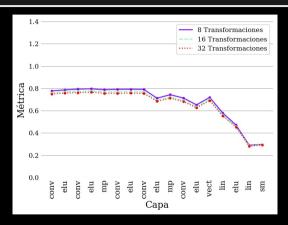
Subconjunto de Datos - Invarianza VN

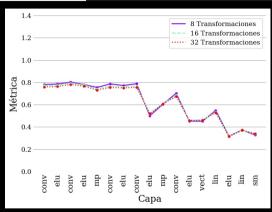




MNIST

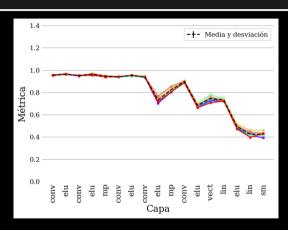
Tamaño del Conj. de Transformaciones - Invarianza

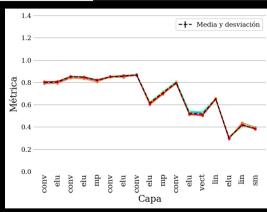




MNIST

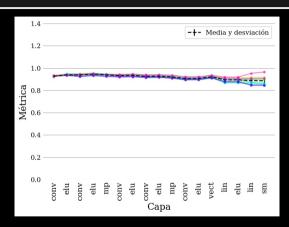
Inicialización Aleatoria - Invarianza VN

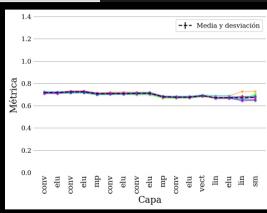




MNIST

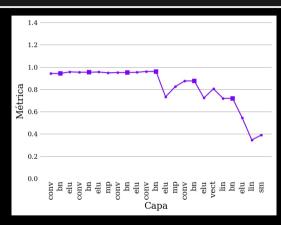
Pesos Aleatorios - Invarianza VN

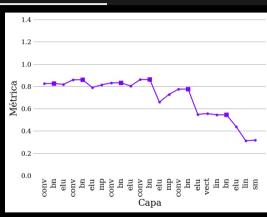




MNIST

Batch Normalization - Invarianza





MNIST

Conclusiones y Trabajo Futuro

Conclusiones

- Capas Invariantes ≠ Modelo Invariante
 - Necesidad de aumentación de datos
- Métricas eficientes e interpretables de Invarianza y Auto-Equivarianza
- Caracterización de de la invarianza y autoequivarianza de varios modelos/características
- · Metodología para analizar invarianza y equivarianza

Publicaciones principales

- 1. Quiroga y col., «Revisiting Data Augmentation for Rotational Invariance in Convolutional Neural Networks», 2018
- 2. Quiroga y col., «Measuring (in) variances in Convolutional Networks», 2019
- 3. Quiroga y col., «Invariance and Same-Equivariance Measures for Neural Networks (en prensa)», 2020

Publicaciones secundarias

- 1. Quiroga y Corbalán, «A novel competitive neural classifier for gesture recognition with small training sets», 2013
- 2. Ronchetti y col., «Distribution of Action Movements (DAM): a Descriptor for Human Action Recognition», 2015
- 3. Quiroga y col., «Handshape recognition for argentinian sign language using probsom», 2016
- 4. Quiroga y col., «Sign languague recognition without frame-sequencing constraints: A proof of concept on the argentinian sign language», 2016
- 5. Quiroga y col., «LSA64: An Argentinian Sign Language Dataset», 2016
- 6. Quiroga y col., «A study of convolutional architectures for handshape recognition applied to sign language», 2017
- 7. Cornejo Fandos y col., «Recognizing Handshapes using Small Datasets», 2019

Trabajo Futuro

1. Herramienta

- Soporte de TensorFlow
- Mejor performance
- Mejor reporte

2. Métricas

- · Caracterización teórica
- · Métrica de equivarianza
- · Unicidad de la equivarianza

3. Aplicaciones

- · Más modelos invariantes: GCNN, capsules, etc
- · Distintos tipos de modelos: recurrentes, GANs, etc
- · Otros dominios: sesgos y ejemplos adversariales

¡Gracias!

Recorrido por lotes de $\mathbf{MT}(\mathsf{a})$

Eficiente: $\mathcal{O}(k \times n \times m)$

Especialización para Mapas de Característica

- Mapa de características F de $h \times w$
- Activaciones F[i, j]

$$VT(F) = \sum_{i=1}^{n} \sum_{j=1}^{w} VT(F(i,j))$$

$$VM(F) = \sum_{i=1}^{n} \sum_{j=1}^{\infty} VM(F(i,j))$$

$$VN(F) = \frac{VT(F)}{VM(F)}$$

<u>Métrica</u> Distancia Normalizada

- · Reemplazar Var por Distancia Media
- · DistanciaMedia entre pares de activaciones
 - · Cualquier medida de distancia
- Misma interpretación que Varianza Normalizada

$$DT(a) = \text{Media}\left(\left[\text{DistanciaMedia}(\mathbf{MT}[1,:]) \cdots \text{DistanciaMedia}(\mathbf{MT}[n,:])\right]\right)$$

$$DM(a) = \text{Media}\left(\left[\text{DistanciaMedia}(\mathbf{MT}[:,1]) \cdots \text{DistanciaMedia}(\mathbf{MT}[:,m])\right]\right)$$

$$DN(a) = \frac{DT(a)}{DM(a)}$$

[9]

Métrica Distancia Transformacional: detalles


```
\rightarrow (1) Distancia Media
```

$$\biguplus_{\square} \begin{bmatrix} a(t_1(x_1)) & a(t_2(x_1)) & a(t_3(x_1)) & a(t_4(x_1)) \\ a(t_1(x_2)) & a(t_2(x_2)) & a(t_3(x_2)) & a(t_4(x_2)) \\ a(t_1(x_3)) & a(t_2(x_3)) & a(t_3(x_3)) & a(t_4(x_3)) \\ a(t_1(x_4)) & a(t_2(x_4)) & a(t_3(x_4)) & a(t_4(x_4)) \\ a(t_1(x_5)) & a(t_2(x_5)) & a(t_3(x_5)) & a(t_4(x_5)) \end{bmatrix}$$

 $a \begin{bmatrix} \text{DistanciaMedia}(\left[\ a(t_1(x_1)) \ a(t_2(x_1)) \ a(t_3(x_1)) \ a(t_4(x_1) \ \right]) \\ \text{DistanciaMedia}(\left[\ a(t_1(x_2)) \ a(t_2(x_2)) \ a(t_3(x_2)) \ a(t_4(x_2)) \ \right]) \\ \text{DistanciaMedia}(\left[\ a(t_1(x_3)) \ a(t_2(x_3)) \ a(t_3(x_3)) \ a(t_4(x_3) \ \right]) \\ \text{DistanciaMedia}(\left[\ a(t_1(x_4)) \ a(t_2(x_4)) \ a(t_3(x_4)) \ a(t_4(x_4) \ \right]) \\ \text{DistanciaMedia}(\left[\ a(t_1(x_5)) \ a(t_2(x_5)) \ a(t_3(x_5)) \ a(t_4(x_5) \ \right]) \end{bmatrix}$

$$DT(a) = Media \begin{pmatrix} \text{DistanciaMedia}(\mathbf{MT}(a)[1,:]) \\ \cdots \\ \text{DistanciaMedia}(\mathbf{MT}(a)[n,:]) \end{pmatrix}$$
[10]

 $\operatorname{DistanciaMedia} o \operatorname{\mathsf{Media}}(\operatorname{\mathsf{Matriz}} \operatorname{\mathsf{de}} \operatorname{\mathsf{distancias}} \operatorname{\mathsf{de}} m \times m)$

Aproximación de Distancia Transformacional

- No hay calculo online de distancias por pares
 - Eficiencia $\mathcal{O}(m \times m \times n \times k)$
- → Aproximación de DistanciaMedia
- **Sólo** calcular distancias entre los b ejemplos de un lote
 - Eficiencia $\mathcal{O}(b \times b \times \frac{m \times n}{b} \times k) = \mathcal{O}(b \times m \times n \times k)$
 - + b más grande ightarrow mejor aproximación
 - \cdot b más chico ightarrow menor cómputo

Distancia Normalizada vs Varianza Normalizada

- Para distancia euclídea
 - · DistanciaMedia($[x_1 \dots x_n]$) = $2Var([x_1 \dots x_n])$
 - $DN(a) \simeq VN(a)$
- $V \to VN$ es un caso particular de DN
 - Más eficiente
 - Sin aproximación

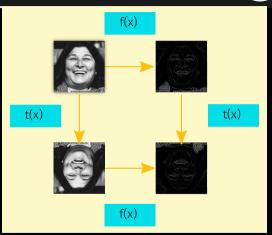
Métrica Auto-Equivarianza de Distancia Simple


```
AEDS(A) = Media(
            Distancia(A(t_1(x_0)), t_1(A(x_0))),
            Distancia(A(t_2(x_0)), t_2(A(x_0))),
            Distancia(\overline{A(t_m(x_0))},t_m(\overline{A(x_0)})),
            Distancia(A(t_m(x_n)), t_m(A(x_n))),
```

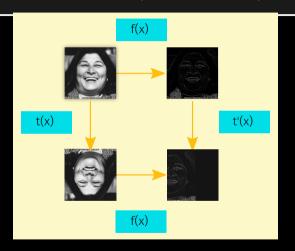
[11]

Métrica Auto-Equivarianza de Distancia Simple

- $\mathcal{O}(k \times m \times n)$ con distancia arbitraria
- \cdot No requiere t_i invertible
- Pierde transformaciones/muestras
- Requiere normalizar activaciones



Métrica de Equivarianza por capas de Lenc



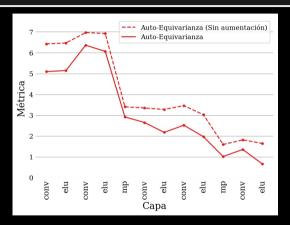
- 1. Asume $\overline{t'(x)} = Ax$
- 2. Aprende t'(x) mediante descenso de gradiente
- 3. Conjunto de datos:
 - Entrada: f(x)
 - Salida: f(t(x))
- 4. |A-I| mide Invarianza

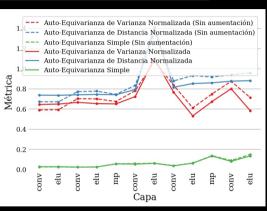
Modelos/Datos/Transformaciones/Métricas

Probamos

- MNIST, CIFAR10
- · SimpleConv, AllConvolutional, VGG16, ResNet, TIPooling
- · Rotaciones, Escalados, Translaciones, Combinaciones
- Invarianza: VT/VM/VN, DT/DM/DN, ANOVA, Goodfellow
- Autoequivarianza: AEVT/AEVM/AEVN, AEDT/AEDM/AEDN, AEDS
- Veremos: MNIST/CIFAR10, SimpleConv, Rotaciones, Invarianza de VN/ Auto-Equivarianza de VN

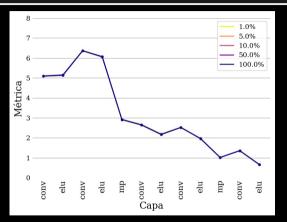
Auto-Equivarianza - VN

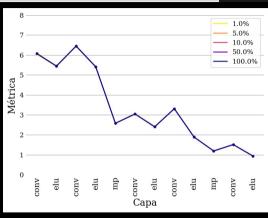




MNIST

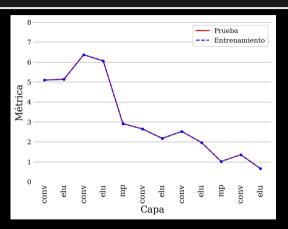
Tamaño del Conjunto de Datos - Auto-Equivarianza

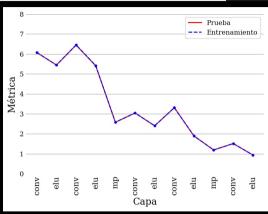




MNIST

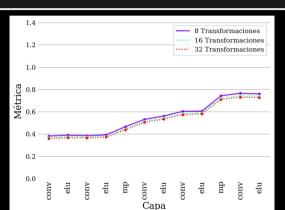
Subconjunto de Datos - Auto-Equivarianza VN

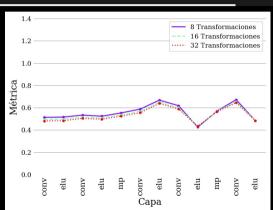




MNIST

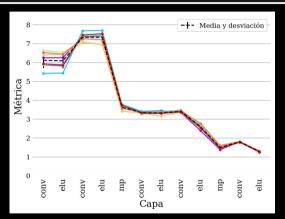
Tamaño del Conj. de Transformaciones - Auto-Equivarianza VN

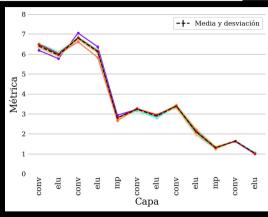




MNIST

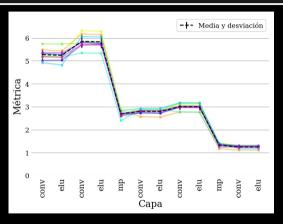
Inicialización Aleatoria - Auto-Equivarianza VN

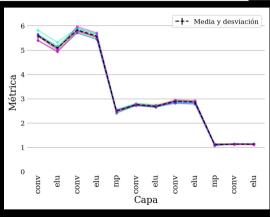




MNIST

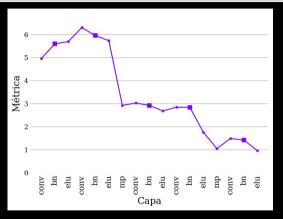
Pesos Aleatorios - Auto-Equivarianza VN

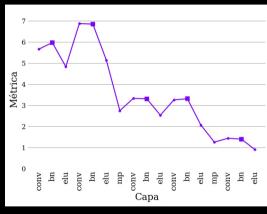




MNIST

Batch Normalization - Auto-Equivarianza

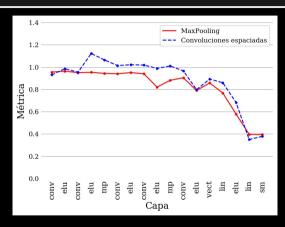


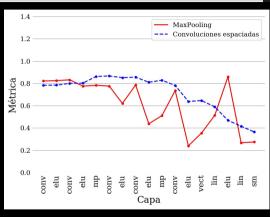


MNIST

CIFAR10

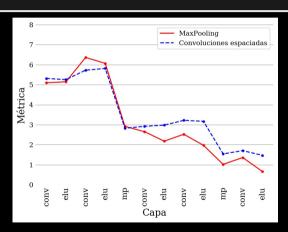
MaxPool. vs Convoluciones con paso=2 - Invarianza

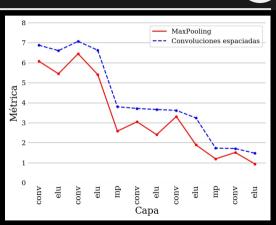




MNIST

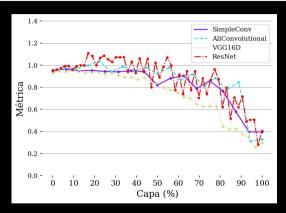
MaxPool. vs Convoluciones con paso=2 - Auto-Equivarianza

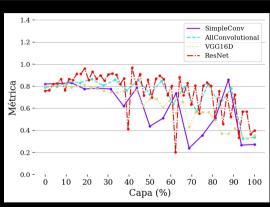




MNIST CIFAR10

Comparación de modelos - Invarianza

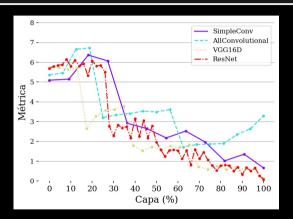


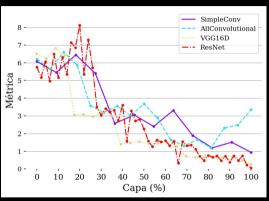


MNIST

CIFAR10

Comparación de modelos - Auto-Equivarianza





MNIST

Estudio de modelos - Conclusiones

- Batch Normalization
 - $\cdot \to \mathsf{No}$ cambia la estructura de la invarianza/auto-equivarianza
- Max Pooling vs Convoluciones con paso = 2
 - $\cdot \rightarrow$ Cambia la estructura de la invarianza
 - $\cdot \to \mathsf{No}$ cambia la estructura de la auto-equivarianza
- Comparación de modelos
 - $\cdot \, o$ Distribución similar de equivarianza